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Sabatier, Toulouse, France

El Mokhtar Essassi

Laboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences
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Abstract: A quinoxaline-2,3-dione derivative was synthesized, and its chemical

structure was determined through spectral analysis. Alkylation of this compound

under phase transfer catalysis (PTC) conditions yielded monoalkylated and diaky-

lated adducts. The monolalkylation process was shown to be regioselective
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occurring on the quinoxalic nitrogen atom rather than on its pyrazolic analogue. The

full characterization of the synthesized compounds was studied by concerted use of

NMR and MS techniques. Assignments of proton and carbon atoms were achieved

through analysis of the 1D 1H and 13C NMR spectra combined with homo- and

hetero-nuclear 2D NMR experiments. Determination of the alkylation site was

achieved through long-range proton–carbon coupling correlations spectroscopy.

Keywords: Alkylation, COSY, HMBC, HMQC, MS, NMR, quinoxaline, regioselec-

tivity, structural elucidation

INTRODUCTION

Quinoxaline derivatives are of great importance because many applications have

been reported for such adducts.[1–4] In addition to their use as metal detectors, [5]

they are widely applied for medical use as antibiotics,[6] antidepressors,[7] and

anticonvulsants. [8] They are also used in the agricultural field as fungicides,[9]

herbicides, [10] and insecticides.[11] In cosmetology, many patents describe

them as hair paint.[12] All these applications prompted us to investigate the

synthesis of new quinoxalic derivatives. The current work was undertaken

with the view to synthesize new heterocyclic systems of quinoxaline derivatives

that may possess biological and pharmacological activities.

For this purpose, 3-N-(2-aminophenylamino)-5-phenylpyrazole (1) was

chosen as starting material (Scheme 1). The synthesis of quinoxaline (3)

was thus achieved and was used for the preparation of monoalkylated and

diakylated derivatives. The structural elucidation of all the studied

compounds was explored through IR, MS, and 1D and 2D NMR analysis.

MATERIALS AND METHODS

Melting points were determined on a Mettler FP 62 (Metler Toledo, Switzerland)

in open capillary tubes or on a Koffler apparatus and are uncorrected. IR spectra

Scheme 1.
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were recorded on a Perkin-Elmer 1600 spectrometer as KBr pellet. Mass

spectra were recorded on a Varian Mat 311A spectrometer equipped with a

Data System 2040. Spectra were acquired in EI or DCI/NH3 modes. NMR

spectra were acquired using a Bruker AC 200 and AC 250 spectrometers

(Bruker, Germany) for 1D NMR analysis. 2D homo (1H–1H) and heteronuc-

lear (HMQC, HMBC) coupling NMR analyses were acquired on a DPX 200

and 400 MHz apparatus. Chemical shifts are given in ppm using TMS as an

internal standard and coupling constants are given in Hz. Elemental analysis

was performed at CNRS service (Toulouse, France).

Synthesis of 1-(3-Phenylpyrazol-5-yl)-4-allyl-1,2,3,4-

tetrahydroquinoxaline-2,3-dione (3)

Compound 1 0.01 mole (3.04 g) was solubilized in 80 mL of ethyl oxalate.

The obtained solution was concentrated and the residue was washed with

ether. Compound 3 was then purified by recrystallization from ethanol with

a yield of 90%: m.p. . 2608C, IR (KBr): 1718 and 1722 (C55O). 1H NMR

(DMSOd6): 6.71 (s, 1H, H–C40), 6.88–7.41 (m, 9H, H-C aromatic). 13C

NMR (DMSOd6): 100.5 (C40), 115.5–129.1 (CH aromatic), 125.4, 126.0,

126.4, 144.2 (Cq), 144.5 (C55N), 153.7 (C55O), 155.1 (C55O). MS-DCI

(NH3): m/z 305 ([M þ H]þ). Analysis: For C17H12N4O2, calculated C:

67.10%, H: 3.97%, N: 18.41%; found C: 66.92%, H: 4.18%, N: 18.27%.

Alkylation of Quinoxalin-2,3-dione

Compound 3 0.01 mole was dissolved in 60 mL DMF; 0.02 mole each alkyl

halide (CH255CH-Cl, HC;;C-CH2-Br, Cl-CH2COOEt), 0.02 mole of

potassium carbonate, and tetrabutylammonium bromide were then added.

The obtained mixture was stirred at room temperature. After filtration, the

solvent was evaporated under reduced pressure and the resulting crude

material was dissolved in CH2Cl2, concentrated under reduced pressure, and

separated on Silicagel column chromatography using hexane/AcOEt 8/2 as

eluent giving compounds 4–6 and 10–12 (Scheme 2).

1-(30-Phenylpyrazol-50-yl)-4-allyl-1,2,3,4-tetrahydroquinoxaline-

2,3-dione (4)

The product was obtained by stirring the reaction mixture during 48 hr.

Compound 4 was obtained with a yield of 81%: m.p. 228–2308C, IR

(KBr): 1718 and 1722 (C55O). 1H NMR (CDCl3/TFA): 4.9 (d, 2H, N–

CH2, 7.2 Hz), 5.32 (dd, 1H, H2C55, 2.7 and 9.6 Hz), 5.59 (m, 1H, HC55),

5.62 (dd, 1H, H2C55, 1.4, 9.6 Hz), 6.84 (s, 1H, H–C40), 6.88–7.41 (m, 9H,
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H–C aromatic). 13C NMR (CDCl3/TFA): 46.8 (NCH2), 102.6 (C40), 108.7

(Cq), 119.4 (55CH2), 125.7–131.2 (CH aromatic, 55CH), 126.1 (C4a),

126.9 (C8a), 135.7 (Cq aromatic), 140.5 (C55N), 148.2 (Cq), 155.1 (C55O).

MS (EI): m/z 344. Analysis: For C20H16N4O2, calculated C: 69.76%, H:

4.68%, N: 16.27%; found C: 69.60%, H: 4.88%, N: 16.32%.

1-(30-Phenylpyrazol-50-yl)-4-propargyl-1,2,3,4-

tetrahydroquinoxaline-2,3-dione (5)

Compound 5 was obtained with a yield of 75% by stirring the reaction

mixture during 12 h: m.p. 250–2528C, IR (KBr): 1718 and 1722 (C55O),

3260 (;;C-H), 2140 (C;;C). 1H NMR (CDCl3/TFA): 2.36 (t, 1H, HC;;,

2.6Hz), 5.05 (d, 2H, N–CH2, 2.6 Hz), 6.67 (s, 1H, H–C40), 6.85–7.59

(m, 9H, H–C aromatic). 13C NMR (CDCl3/TFA): 33.6 (NCH2), 74.5

(;;CH), 75.3 (–C;;), 101.8 (C40), 116.8–130.5 (CH aromatic), 123.1

(C4a), 125.2 (C8a), 125.7 (Cq), 141.7 (Cq(ar)), 147.2 (C55N), 155.0

(C55O), 159.6 (C55O). MS (EI): m/z 342. Analysis: For C20H14N4O4, calcu-

lated C: 70.17%, H: 4.12%, N: 16.37%; found C: 70.03%, H: 4.31%, N:

16.45%).

1-(30-phenylpyrazol-50-yl)-4-ethoxycarbonylmethyl-1,2,3,4-
tetrahydroquinoxaline-2,3-dione (6)

Compound 6 was obtained with a yield of 70% according to the procedure

described above by stirring the mixture during 72hr: m.p. 110–1128C, IR

(KBr): 1718 and 1722 (C55O), 1750 (C55O ester). 1H NMR (CDCl3): 1.28

(t, 3H, CH3, 7.1 Hz), 4.31 (q, 2H, OCH2, 7.1 Hz), 5.00 (s, 2H, NCH2), 6.34

(s, 1H, H–C40), 6.81–7.23 (m, 9H, H–C(ar)). 13C NMR (CDCl3): 14.2

(CH3), 44.7 (NCH2), 62.3 (OCH2), 99.8 (C40), 114.1–128.8 (CH(ar)), 126.4

(C4a), 128.3 (C8a), 128.4 (Car), 143.6 (C30), 145.8 (C55N), 154.6 (C55O),

155.0 (C55O), 167.2 (O-C55O). MS (EI): m/z 390. Analysis: For

C21H18N4O4, calculated C: 64.61%, H: 4.65%, N: 16.39%; found C:

64.51%, H: 4.84%, N: 16.30%.

1-(10-Allyl-30-phenylpyrazol-50-yl)-4-allyl-1,2,3,4-

tetrahydroquinoxaline-2,3-dione (10)

The title product was obtained after stirring the mixture during 48 hr with

a yield of 19%: m.p. 118–1208C, IR (KBr): 1718 and 1722 (C55O). 1H

NMR (CDCl3): 6.67 (s, 1H, H–C(4)), 6.75–7.88 (m, 9H, H–C aromatic),

4.61 (d, 2H, N–CH2, 7.4 Hz), 4.92 (d, 2H, N–CH2, 7.4 Hz), 5.11 (m, 2H,

H2C55), 5.35 (m, 2H, H2C55), 5.91 (m, 2H, HC55). 13C NMR (CDCl3):

45.8 (NCH2), 52.6 (NCH2), 102.0 (C40), 108.7 (Cq), 118.7 (55CH2), 118.9
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(55CH2), 124.5–131.8 (CH aromatic,55CH), 126.4 (C4a), 127.4 (C8a), 132.7

(Cq aromatic), 133.5 (C55N), 151.4 (C55O), 153.6 (C55O). MS-DCI (NH3):

m/z 385 ([M þ H]þ). Analysis: For C23H20N4O2, calculated C: 71.86%, H:

5.24%, N: 14.57%; found C: 71.64%, H: 5.41%, N: 14.75%.

1-(10-Propargyl-30-phenylpyrazol-50-yl)-4-propargyl-1,2,3,4-

tetrahydroquinoxaline-2,3-dione (11)

Compound 11 was formed after stirring the reaction mixture during 12 hr.

It was obtained with a yield of 25%: m.p. 205–2078C, IR (KBr): 1718 and

1722 (C55O), 3263 (;;C–H), 2143 (C;;C). 1H NMR (CDCl3/TFA): 6.78

(s, 1H, H–C40), 6.91–7.75 (m, 9H, H–C(ar)), 4.96 (d, 2H, N–CH2,

2.6 Hz), 5.11 (d, 2H, N–CH2, 2.6 Hz), 2.24 (t, 1H, HC;;, 2.6Hz), 2.42

(t, 1H, HC;;, 2.6Hz). 13C NMR (CDCl3/TFA): 33.8 (NCH2), 39.2

(NCH2), 74.3 (;;CH), 74.8 (;;CH), 75.1 (–C;;), 75.7 (–C;;), 103.3

(C40), 116.5–130.0 (CH aromatic), 125.2 (C4a), 126.4 (C8a), 129.9 (Cq),

134.1 (Cq aromatic), 152.9 (C55N), 154.2 (C55O), 154.3 (C55O). MS (EI):

m/z 380. Analysis: For C23H16N4O2, calculated C: 72.62%, H: 4.24%, N:

14.73%; found C: 72.45%, H: 4.38%, N: 14.55%.

1-(10-Ethoxycarbonylmethyl-30-phenylpyrazol-50-yl)-

4 -ethoxycarbonylmethyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (12)

Compound 12was isolated through column chromatography after 72hr reaction.

Reaction yield 30%, m.p. 128–1308C, IR (KBr): 1718 and 1722 (C55O), 1750

(CO ester). 1H NMR (CDCl3): 6.67 (s, 1H, H–C40), 6.99–7.83 (m, 9H, H–C

aromatic), 4.74 (s, 2H, NCH2), 4.91 (s, 2H, NCH2), 4.05 (q, 2H, OCH2,

7.12 Hz), 4.27 (q, 2H, OCH2, 7.12 Hz), 1.12 (t, 3H, CH3, 7.12 Hz), 1.31

(t, 3H, CH3, 7.12 Hz). 13C NMR (CDCl3): 14.0 (CH3), 14.2 (CH3), 44.7

(NCH2), 51.0 (NCH2), 62.0 (OCH2), 62.4 (OCH2), 102.0 (C40), 108.5–128.8

(CH aromatic), 126.5 (C4a), 127.2 (C8a), 128.1 (Cq), 132.5 (Cq aromatic),

134.6 (C55N), 152.0 (C55O), 153.8 (C55O), 166.8 (O–C55O), 167.0 (O–

C55O). MS (EI): m/z 476. Analysis: For C24H24N4O6, calculated C: 63.02%,

H: 5.08%, N: 11.76%; found C: 62.80%, H: 5.25%, N: 11.92%.

RESULTS AND DISCUSSION

Synthesis of Quinoxaline-2,3-dione

Synthesis of the quinoxaline derivative 3 was performed, as indicated in

Scheme 1, by action of ethyl oxalate 2 on the amino pyrazole 1.[13] The

latter was obtained from the 4-phenyl-1,5-benzodiazepin-2-thione by

Elucidation of New Quinoxaline Derivatives 745
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hydrazinolysis. Structural elucidation of compound 3 was achieved through

IR, MS, and NMR analysis. Thus, 1H NMR spectrum recorded in DMSO

showed in particular a signal at 6.71 ppm corresponding with the 40

pyrazolic proton,[14] while the aromatic protons were observed between

6.65 and 7.68 ppm. Among the signals observed in the 13C NMR spectrum

were those located at 100.5 and 144.5 ppm assigned to the 40 and 50

pyrazolic carbon atoms while the two carbonyl carbon atoms were observed

at 153.7 and 155.1 ppm. The presence of the latter was also confirmed

through IR spectroscopy where absorptions were observed at 1718 and

1722 cm21.

The mass spectrum of compound 3 showed molecular ion at 304 in

agreement with the proposed chemical structure. Various signals were also

observed corresponding with the fragmentations shown in Fig. 1.

Alkylation of Quinoxaline-2,3-dione

In order to prepare new quinoxaline derivatives, alkylation of compound 3 by

various alkyl halides (allyl bromide, propargyl bromide, ethyl chloroacetate)

was explored under solid–liquid phase transfer catalysis in DMF, in pres-

ence of potassium carbonate and with tetra n-butylammonium bromide as

catalyst. The formation of monoalkylated derivatives which were obtained

as major compounds in addition to dialkylated derivatives was observed

in all the studied cases (Scheme 2). It may be noted that two nitrogen

atoms could be involved in the alkylation process. Thus, monoalkylation

could occur on the pyrazolic nitrogen giving compounds 4–6 or on the quin-

oxalic one giving compounds 7–9, while both nitrogen atoms are involved

in the dilakylated derivatives yielding compounds 10–12. The fact that only

one monoalkylated derivative was obtained in all the studied cases showed

Figure 1. Mass spectrum and main fragmentations observed in compound 3.
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that only one nitrogen atom was involved in the alkylation process suggesting

that the reaction is regioselective.

In order to elucidate the regioselectivity of the reaction by determin-

ing which nitrogen atom was involved in the monoalkyllation process, the

structures of the obtained compounds were investigated through IR, MS, 1D

(1H, 13C), and 2D (COSY, HMQC, HMBC) NMR analysis. In the 1H NMR

spectra, the presence of signals corresponding with the alky groups (allyl,

propargyl, CH2COOEt) were observed. These data were also confirmed

through 13C NMR analysis, and the obtained results are gathered in the

“Materials and Methods” section.

As indicated above, monolakylation could occur at the pyrazolic nitrogen

giving products 4–6 or at the quinoxalic nitrogen yielding compounds 7–9.

In order to determine the alkylation site in each case, homonuclear (COSY)

and heteronuclear (HMQC, HMBC) 2D NMR analyses were used. Only the

monolakylated derivatives having the CH2COOEt as alkyl group will be

detailed here as an example. The structures of the two monoalkylated deriva-

tives involving the allyl and the propargyl groups were determined through

similar reasoning.

The possible monoalkylated derivatives involving the CH2COOEt group

are presented as structures A and B reported in Fig. 2.

The chemical shifts of all proton and carbon atoms in addition to the

proton–proton coupling constants were determined through 1D (1H, 13C)

and 2D (1H–1H COSY, 1H–13C HMQC, and HMBC) NMR analysis.

NMR analysis of the monoalkylated derivative (structure A or B) was

initiated by 1H NMR analysis. The obtained spectrum showed two singlets

at 6.34 and 5.00 ppm integrating respectively one and two protons and

corresponding with H–C40 and NCH2. The presence of the ethoxy group

was easily confirmed by the presence in the obtained spectrum of one triplet

(1.28 ppm, 3 protons) and quadruplet (4.31 ppm, 2 protons) with the same

coupling constant (7.12 Hz) and corresponding respectively with the CH3

and OCH2 protons. Finally, the 1H spectrum showed a multiplet between

Scheme 2.
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6.81 and 7.23 ppm integrating 9 protons and corresponding with the aromatic

protons. The 2D COSY NMR spectrum showed correlations involving the

aromatic protons, and the 2D HMQC spectrum showed cross peaks between

protons and their corresponding carbon atoms. Thus, the NCH2 carbon atom

was easily assigned to the signal located at 44.7 ppm due to the presence of

a correlation with the signal located at 5.00 ppm attributed above to the

CH2 protons linked to the quinoxalic nitrogen atom. By the same reasoning,

the signal located at 99.8 ppm was attributed to the C40 carbon atom due to

its correlation with the pyrazolic proton signal. Finally, the signals located

at 14.2 and 62.3 ppm were attributed to the carbon atoms of the ethyl

methylene and methyl group, respectively.

However, all these data did not allow us to distinguish between the two

possible structures A and B, which are expected to show similar signals in

1D (1H, 13C) and 2D (COSY, HMQC) NMR analysis. In order to differentiate

between the two structures, this requires long-range proton carbon corre-

lations, which will clearly distinguish between the two hypothetical structures

as indicated in Table 1 where the long-range correlations (2J and 3J ) involving

the NCH2 protons expected to be observed in each structure are specified. As

can be noticed, the 2J correlations could not allow us to distinguish between

the two structures because the only 2J correlation possible is similar for

both structures A and B and involves the carbonyl of the CO–OEt group.

On the other hand, Table 1 shows that 3J correlations expected to be

Figure 2. The two possible monoalkylated quinoxaline structures A and B.

Table 1. Long-range correlations involving the

NCH2 protons expected to be observed in structures

A and B

2J (1H,13C) 3J (1H,13C)

Structure A CO–OEt C2, C8a

Structure B CO–OEt C50

N. T. Ghomsi et al.748
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observed are different for structures A and B. Thus, in structure A where the

alkyl group is located on the quinoxalic nitrogen, the methylene protons

(NCH2) should show cross peaks with the carbons 8a, 2, and the O–CO

carbonyl carbon atom while only two correlations are expected to

occur in the case of structure B, the 50 carbon and the O–CO carbonyl

carbon atom.

The obtained spectrum (Fig. 3) showed that the two methylene groups

located around 5.0 ppm showed three correlations with carbon atoms

located at 128.4, 154.6, and 155.0 ppm corresponding respectively with the

C8a carbon, the C2 group, and the carbonyl of the CO–O–Et moiety in

agreement with the structure A. This univocally demonstrates that the mono-

alkylation occurred at the quinoxalic nitrogen atom and not on the pyrazolic

one.

The results concerning the main long-range correlations observed in the

three monoalkylated derivatives are shown in Fig. 4. The observed corre-

lations allowed us to confirm that the monoalkylation occurred at the quin-

oxalic nitrogen atom yielding compounds 4, 5, and 6.

Figure 3. HMBC spectrum of compound 6.
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This demonstrated that the monoalkylation occurred at the quinoxalic

nitrogen position, which could be considered as more reactive than the

pyrazolic one. This led us to conclude that the obtained compounds corre-

sponded thus with structures 4–6 and not to 7–9.
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