

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Synthesis and Spectroscopic Structural Elucidation of New Quinoxaline Derivatives

Nathan Tene Ghomsi^a; Nour-Eddine Hammou Ahabchane^a; Nour-Eddine Es-Safi^b; Bernard Garrigues^c; El Mokhtar Essassi^{ad}

^a Laboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco ^b Laboratoire de Chimie Organique et d'Etudes Physico-Chimiques, Pôle de Compétences Pharmacochimie, Ecole Normale Supérieure, Rabat, Morocco ^c Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, Toulouse, France ^d Académie Hassan II des Sciences et Techniques, Rabat, Morocco

To cite this Article Ghomsi, Nathan Tene , Ahabchane, Nour-Eddine Hammou , Es-Safi, Nour-Eddine , Garrigues, Bernard and Essassi, El Mokhtar(2007) 'Synthesis and Spectroscopic Structural Elucidation of New Quinoxaline Derivatives', Spectroscopy Letters, 40: 5, 741 — 751

To link to this Article: DOI: 10.1080/00387010701301949

URL: <http://dx.doi.org/10.1080/00387010701301949>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and Spectroscopic Structural Elucidation of New Quinoxaline Derivatives

Nathan Tene Ghomsi and Nour-Eddine Hammou Ahabchane
Laboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V, Faculté des Sciences, Rabat, Morocco

Nour-Eddine Es-Safi
Laboratoire de Chimie Organique et d'Etudes Physico-Chimiques, Pôle de Compétences Pharmacochimie, Ecole Normale Supérieure, Rabat, Morocco

Bernard Garrigues
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, Toulouse, France

El Mokhtar Essassi
Laboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V, Faculté des Sciences, Rabat, Morocco and Académie Hassan II des Sciences et Techniques, Rabat, Morocco

Abstract: A quinoxaline-2,3-dione derivative was synthesized, and its chemical structure was determined through spectral analysis. Alkylation of this compound under phase transfer catalysis (PTC) conditions yielded monoalkylated and dialkylated adducts. The monolalkylation process was shown to be regioselective

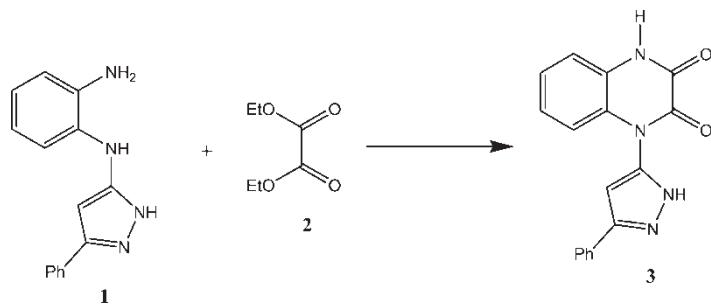
Received 5 October 2006, Accepted 23 February 2007

The authors were invited to contribute this paper to a special issue of the journal entitled “Research on Spectroscopy in Morocco.” This special issue was organized by Miguel de la Guardia, Professor of Analytical Chemistry at Valencia University, Spain.

Address correspondence to Nour-Eddine Es-Safi, Laboratoire de Chimie Organique et d'Etudes Physico-Chimiques, Pôle de Compétences Pharmacochimie, Ecole Normale Supérieure, BP 5118 Rabat, Morocco. E-mail: nouressafi@yahoo.fr

occurring on the quinoxaline nitrogen atom rather than on its pyrazolic analogue. The full characterization of the synthesized compounds was studied by concerted use of NMR and MS techniques. Assignments of proton and carbon atoms were achieved through analysis of the 1D ^1H and ^{13}C NMR spectra combined with homo- and hetero-nuclear 2D NMR experiments. Determination of the alkylation site was achieved through long-range proton–carbon coupling correlations spectroscopy.

Keywords: Alkylation, COSY, HMBC, HMQC, MS, NMR, quinoxaline, regioselectivity, structural elucidation


INTRODUCTION

Quinoxaline derivatives are of great importance because many applications have been reported for such adducts.^[1–4] In addition to their use as metal detectors,^[5] they are widely applied for medical use as antibiotics,^[6] antidepressors,^[7] and anticonvulsants.^[8] They are also used in the agricultural field as fungicides,^[9] herbicides,^[10] and insecticides.^[11] In cosmetology, many patents describe them as hair paint.^[12] All these applications prompted us to investigate the synthesis of new quinoxaline derivatives. The current work was undertaken with the view to synthesize new heterocyclic systems of quinoxaline derivatives that may possess biological and pharmacological activities.

For this purpose, 3-*N*-(2-aminophenylamino)-5-phenylpyrazole (**1**) was chosen as starting material (Scheme 1). The synthesis of quinoxaline (**3**) was thus achieved and was used for the preparation of monoalkylated and dialkylated derivatives. The structural elucidation of all the studied compounds was explored through IR, MS, and 1D and 2D NMR analysis.

MATERIALS AND METHODS

Melting points were determined on a Mettler FP 62 (Metler Toledo, Switzerland) in open capillary tubes or on a Kofler apparatus and are uncorrected. IR spectra

Scheme 1.

were recorded on a Perkin-Elmer 1600 spectrometer as KBr pellet. Mass spectra were recorded on a Varian Mat 311A spectrometer equipped with a Data System 2040. Spectra were acquired in EI or DCI/NH₃ modes. NMR spectra were acquired using a Bruker AC 200 and AC 250 spectrometers (Bruker, Germany) for 1D NMR analysis. 2D homo (¹H-¹H) and heteronuclear (HMQC, HMBC) coupling NMR analyses were acquired on a DPX 200 and 400 MHz apparatus. Chemical shifts are given in ppm using TMS as an internal standard and coupling constants are given in Hz. Elemental analysis was performed at CNRS service (Toulouse, France).

Synthesis of 1-(3-Phenylpyrazol-5-yl)-4-allyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (3)

Compound **1** 0.01 mole (3.04 g) was solubilized in 80 mL of ethyl oxalate. The obtained solution was concentrated and the residue was washed with ether. Compound **3** was then purified by recrystallization from ethanol with a yield of 90%: m.p. > 260°C, IR (KBr): 1718 and 1722 (C=O). ¹H NMR (DMSO_d₆): 6.71 (s, 1H, H-C4'), 6.88–7.41 (m, 9H, H-C aromatic). ¹³C NMR (DMSO_d₆): 100.5 (C4'), 115.5–129.1 (CH aromatic), 125.4, 126.0, 126.4, 144.2 (Cq), 144.5 (C=N), 153.7 (C=O), 155.1 (C=O). MS-DCI (NH₃): *m/z* 305 ([M + H]⁺). Analysis: For C₁₇H₁₂N₄O₂, calculated C: 67.10%, H: 3.97%, N: 18.41%; found C: 66.92%, H: 4.18%, N: 18.27%.

Alkylation of Quinoxalin-2,3-dione

Compound **3** 0.01 mole was dissolved in 60 mL DMF; 0.02 mole each alkyl halide (CH₂=CH-Cl, HC≡C-CH₂-Br, Cl-CH₂COOEt), 0.02 mole of potassium carbonate, and tetrabutylammonium bromide were then added. The obtained mixture was stirred at room temperature. After filtration, the solvent was evaporated under reduced pressure and the resulting crude material was dissolved in CH₂Cl₂, concentrated under reduced pressure, and separated on Silicagel column chromatography using hexane/AcOEt 8/2 as eluent giving compounds **4–6** and **10–12** (Scheme 2).

1-(3'-Phenylpyrazol-5'-yl)-4-allyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (4)

The product was obtained by stirring the reaction mixture during 48 hr. Compound **4** was obtained with a yield of 81%: m.p. 228–230°C, IR (KBr): 1718 and 1722 (C=O). ¹H NMR (CDCl₃/TFA): 4.9 (d, 2H, N-CH₂, 7.2 Hz), 5.32 (dd, 1H, H₂C=, 2.7 and 9.6 Hz), 5.59 (m, 1H, HC=), 5.62 (dd, 1H, H₂C=, 1.4, 9.6 Hz), 6.84 (s, 1H, H-C4'), 6.88–7.41 (m, 9H,

H–C aromatic). ^{13}C NMR (CDCl_3/TFA): 46.8 (NCH₂), 102.6 (C4'), 108.7 (Cq), 119.4 (= CH_2), 125.7–131.2 (CH aromatic, =CH), 126.1 (C4a), 126.9 (C8a), 135.7 (Cq aromatic), 140.5 (C=N), 148.2 (Cq), 155.1 (C=O). MS (EI): *m/z* 344. Analysis: For $\text{C}_{20}\text{H}_{16}\text{N}_4\text{O}_2$, calculated C: 69.76%, H: 4.68%, N: 16.27%; found C: 69.60%, H: 4.88%, N: 16.32%.

1-(3'-Phenylpyrazol-5'-yl)-4-propargyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (5)

Compound **5** was obtained with a yield of 75% by stirring the reaction mixture during 12 h: m.p. 250–252°C, IR (KBr): 1718 and 1722 (C=O), 3260 (= C-H), 2140 (C≡C). ^1H NMR (CDCl_3/TFA): 2.36 (t, 1H, HC≡, 2.6 Hz), 5.05 (d, 2H, N–CH₂, 2.6 Hz), 6.67 (s, 1H, H–C4'), 6.85–7.59 (m, 9H, H–C aromatic). ^{13}C NMR (CDCl_3/TFA): 33.6 (NCH₂), 74.5 (≡CH), 75.3 (–C≡), 101.8 (C4'), 116.8–130.5 (CH aromatic), 123.1 (C4a), 125.2 (C8a), 125.7 (Cq), 141.7 (Cq(ar)), 147.2 (C=N), 155.0 (C=O), 159.6 (C=O). MS (EI): *m/z* 342. Analysis: For $\text{C}_{20}\text{H}_{14}\text{N}_4\text{O}_4$, calculated C: 70.17%, H: 4.12%, N: 16.37%; found C: 70.03%, H: 4.31%, N: 16.45%.

1-(3'-phenylpyrazol-5'-yl)-4-ethoxycarbonylmethyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (6)

Compound **6** was obtained with a yield of 70% according to the procedure described above by stirring the mixture during 72 hr: m.p. 110–112°C, IR (KBr): 1718 and 1722 (C=O), 1750 (C=O ester). ^1H NMR (CDCl_3): 1.28 (t, 3H, CH₃, 7.1 Hz), 4.31 (q, 2H, OCH₂, 7.1 Hz), 5.00 (s, 2H, NCH₂), 6.34 (s, 1H, H–C4'), 6.81–7.23 (m, 9H, H–C(ar)). ^{13}C NMR (CDCl_3): 14.2 (CH₃), 44.7 (NCH₂), 62.3 (OCH₂), 99.8 (C4'), 114.1–128.8 (CH(ar)), 126.4 (C4a), 128.3 (C8a), 128.4 (Car), 143.6 (C3'), 145.8 (C=N), 154.6 (C=O), 155.0 (C=O), 167.2 (O–C=O). MS (EI): *m/z* 390. Analysis: For $\text{C}_{21}\text{H}_{18}\text{N}_4\text{O}_4$, calculated C: 64.61%, H: 4.65%, N: 16.39%; found C: 64.51%, H: 4.84%, N: 16.30%.

1-(1'-Allyl-3'-phenylpyrazol-5'-yl)-4-allyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (10)

The title product was obtained after stirring the mixture during 48 hr with a yield of 19%: m.p. 118–120°C, IR (KBr): 1718 and 1722 (C=O). ^1H NMR (CDCl_3): 6.67 (s, 1H, H–C(4)), 6.75–7.88 (m, 9H, H–C aromatic), 4.61 (d, 2H, N–CH₂, 7.4 Hz), 4.92 (d, 2H, N–CH₂, 7.4 Hz), 5.11 (m, 2H, H₂C=), 5.35 (m, 2H, H₂C=), 5.91 (m, 2H, HC=). ^{13}C NMR (CDCl_3): 45.8 (NCH₂), 52.6 (NCH₂), 102.0 (C4'), 108.7 (Cq), 118.7 (= CH_2), 118.9

(=CH₂), 124.5–131.8 (CH aromatic, =CH), 126.4 (C4a), 127.4 (C8a), 132.7 (Cq aromatic), 133.5 (C=N), 151.4 (C=O), 153.6 (C=O). MS-DCI (NH₃): *m/z* 385 ([M + H]⁺). Analysis: For C₂₃H₂₀N₄O₂, calculated C: 71.86%, H: 5.24%, N: 14.57%; found C: 71.64%, H: 5.41%, N: 14.75%.

1-(1'-Propargyl-3'-phenylpyrazol-5'-yl)-4-propargyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (11)

Compound **11** was formed after stirring the reaction mixture during 12 hr. It was obtained with a yield of 25%: m.p. 205–207°C, IR (KBr): 1718 and 1722 (C=O), 3263 (≡C–H), 2143 (C≡C). ¹H NMR (CDCl₃/TFA): 6.78 (s, 1H, H–C4'), 6.91–7.75 (m, 9H, H–C(ar)), 4.96 (d, 2H, N–CH₂, 2.6 Hz), 5.11 (d, 2H, N–CH₂, 2.6 Hz), 2.24 (t, 1H, HC≡, 2.6 Hz), 2.42 (t, 1H, HC≡, 2.6 Hz). ¹³C NMR (CDCl₃/TFA): 33.8 (NCH₂), 39.2 (NCH₂), 74.3 (≡CH), 74.8 (≡CH), 75.1 (–C≡), 75.7 (–C≡), 103.3 (C4'), 116.5–130.0 (CH aromatic), 125.2 (C4a), 126.4 (C8a), 129.9 (Cq), 134.1 (Cq aromatic), 152.9 (C=N), 154.2 (C=O), 154.3 (C=O). MS (EI): *m/z* 380. Analysis: For C₂₃H₁₆N₄O₂, calculated C: 72.62%, H: 4.24%, N: 14.73%; found C: 72.45%, H: 4.38%, N: 14.55%.

1-(1'-Ethoxycarbonylmethyl-3'-phenylpyrazol-5'-yl)-4-ethoxycarbonylmethyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (12)

Compound **12** was isolated through column chromatography after 72 hr reaction. Reaction yield 30%, m.p. 128–130°C, IR (KBr): 1718 and 1722 (C=O), 1750 (CO ester). ¹H NMR (CDCl₃): 6.67 (s, 1H, H–C4'), 6.99–7.83 (m, 9H, H–C aromatic), 4.74 (s, 2H, NCH₂), 4.91 (s, 2H, NCH₂), 4.05 (q, 2H, OCH₂, 7.12 Hz), 4.27 (q, 2H, OCH₂, 7.12 Hz), 1.12 (t, 3H, CH₃, 7.12 Hz), 1.31 (t, 3H, CH₃, 7.12 Hz). ¹³C NMR (CDCl₃): 14.0 (CH₃), 14.2 (CH₃), 44.7 (NCH₂), 51.0 (NCH₂), 62.0 (OCH₂), 62.4 (OCH₂), 102.0 (C4'), 108.5–128.8 (CH aromatic), 126.5 (C4a), 127.2 (C8a), 128.1 (Cq), 132.5 (Cq aromatic), 134.6 (C=N), 152.0 (C=O), 153.8 (C=O), 166.8 (O–C=O), 167.0 (O–C=O). MS (EI): *m/z* 476. Analysis: For C₂₄H₂₄N₄O₆, calculated C: 63.02%, H: 5.08%, N: 11.76%; found C: 62.80%, H: 5.25%, N: 11.92%.

RESULTS AND DISCUSSION

Synthesis of Quinoxaline-2,3-dione

Synthesis of the quinoxaline derivative **3** was performed, as indicated in Scheme 1, by action of ethyl oxalate **2** on the amino pyrazole **1**.^[13] The latter was obtained from the 4-phenyl-1,5-benzodiazepin-2-thione by

hydrazinolysis. Structural elucidation of compound **3** was achieved through IR, MS, and NMR analysis. Thus, ¹H NMR spectrum recorded in DMSO showed in particular a signal at 6.71 ppm corresponding with the 4' pyrazolic proton,^[14] while the aromatic protons were observed between 6.65 and 7.68 ppm. Among the signals observed in the ¹³C NMR spectrum were those located at 100.5 and 144.5 ppm assigned to the 4' and 5' pyrazolic carbon atoms while the two carbonyl carbon atoms were observed at 153.7 and 155.1 ppm. The presence of the latter was also confirmed through IR spectroscopy where absorptions were observed at 1718 and 1722 cm⁻¹.

The mass spectrum of compound **3** showed molecular ion at 304 in agreement with the proposed chemical structure. Various signals were also observed corresponding with the fragmentations shown in Fig. 1.

Alkylation of Quinoxaline-2,3-dione

In order to prepare new quinoxaline derivatives, alkylation of compound **3** by various alkyl halides (allyl bromide, propargyl bromide, ethyl chloroacetate) was explored under solid–liquid phase transfer catalysis in DMF, in presence of potassium carbonate and with tetra *n*-butylammonium bromide as catalyst. The formation of monoalkylated derivatives which were obtained as major compounds in addition to dialkylated derivatives was observed in all the studied cases (Scheme 2). It may be noted that two nitrogen atoms could be involved in the alkylation process. Thus, monoalkylation could occur on the pyrazolic nitrogen giving compounds **4–6** or on the quinoxaline one giving compounds **7–9**, while both nitrogen atoms are involved in the dilalkylated derivatives yielding compounds **10–12**. The fact that only one monoalkylated derivative was obtained in all the studied cases showed

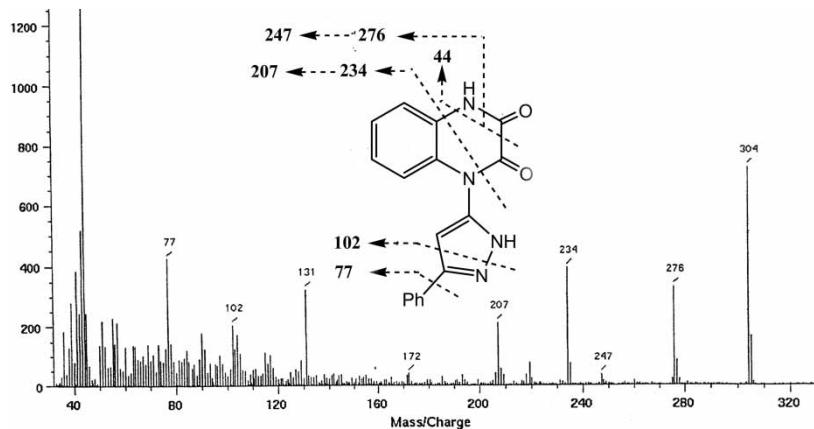
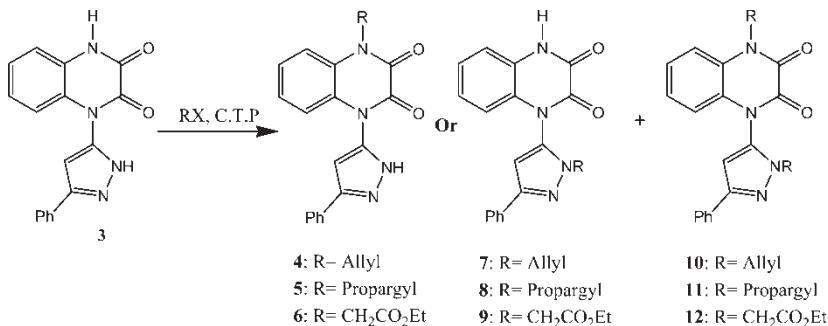
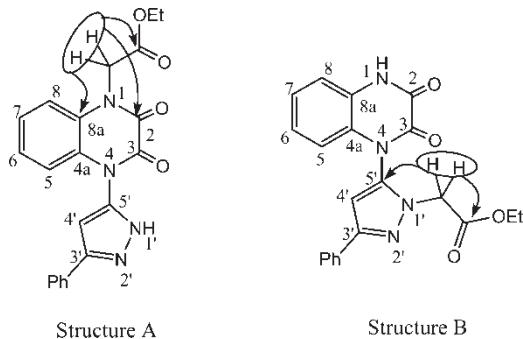



Figure 1. Mass spectrum and main fragmentations observed in compound 3.

Scheme 2.

that only one nitrogen atom was involved in the alkylation process suggesting that the reaction is regioselective.


In order to elucidate the regioselectivity of the reaction by determining which nitrogen atom was involved in the monoalkylation process, the structures of the obtained compounds were investigated through IR, MS, 1D (^1H , ^{13}C), and 2D (COSY, HMQC, HMBC) NMR analysis. In the ^1H NMR spectra, the presence of signals corresponding with the alky groups (allyl, propargyl, CH_2COOEt) were observed. These data were also confirmed through ^{13}C NMR analysis, and the obtained results are gathered in the “Materials and Methods” section.

As indicated above, monolakylation could occur at the pyrazolic nitrogen giving products **4–6** or at the quinoxalic nitrogen yielding compounds **7–9**. In order to determine the alkylation site in each case, homonuclear (COSY) and heteronuclear (HMQC, HMBC) 2D NMR analyses were used. Only the monolakylated derivatives having the CH_2COOEt as alkyl group will be detailed here as an example. The structures of the two monoalkylated derivatives involving the allyl and the propargyl groups were determined through similar reasoning.

The possible monoalkylated derivatives involving the CH_2COOEt group are presented as structures A and B reported in Fig. 2.

The chemical shifts of all proton and carbon atoms in addition to the proton–proton coupling constants were determined through 1D (^1H , ^{13}C) and 2D (^1H – ^1H COSY, ^1H – ^{13}C HMQC, and HMBC) NMR analysis.

NMR analysis of the monoalkylated derivative (structure A or B) was initiated by ^1H NMR analysis. The obtained spectrum showed two singlets at 6.34 and 5.00 ppm integrating respectively one and two protons and corresponding with $\text{H}-\text{C}4'$ and NCH_2 . The presence of the ethoxy group was easily confirmed by the presence in the obtained spectrum of one triplet (1.28 ppm, 3 protons) and quadruplet (4.31 ppm, 2 protons) with the same coupling constant (7.12 Hz) and corresponding respectively with the CH_3 and OCH_2 protons. Finally, the ^1H spectrum showed a multiplet between

Figure 2. The two possible monoalkylated quinoxaline structures A and B.

6.81 and 7.23 ppm integrating 9 protons and corresponding with the aromatic protons. The 2D COSY NMR spectrum showed correlations involving the aromatic protons, and the 2D HMQC spectrum showed cross peaks between the protons and their corresponding carbon atoms. Thus, the NCH₂ carbon atom was easily assigned to the signal located at 44.7 ppm due to the presence of a correlation with the signal located at 5.00 ppm attributed above to the CH₂ protons linked to the quinoxaline nitrogen atom. By the same reasoning, the signal located at 99.8 ppm was attributed to the C4' carbon atom due to its correlation with the pyrazolic proton signal. Finally, the signals located at 14.2 and 62.3 ppm were attributed to the carbon atoms of the ethyl methylene and methyl group, respectively.

However, all these data did not allow us to distinguish between the two possible structures A and B, which are expected to show similar signals in 1D (¹H, ¹³C) and 2D (COSY, HMQC) NMR analysis. In order to differentiate between the two structures, this requires long-range proton carbon correlations, which will clearly distinguish between the two hypothetical structures as indicated in Table 1 where the long-range correlations (²J and ³J) involving the NCH₂ protons expected to be observed in each structure are specified. As can be noticed, the ²J correlations could not allow us to distinguish between the two structures because the only ²J correlation possible is similar for both structures A and B and involves the carbonyl of the CO-OEt group. On the other hand, Table 1 shows that ³J correlations expected to be

Table 1. Long-range correlations involving the NCH₂ protons expected to be observed in structures A and B

	² J (¹ H, ¹³ C)	³ J (¹ H, ¹³ C)
Structure A	CO-OEt	C2, C8a
Structure B	CO-OEt	C5'

observed are different for structures A and B. Thus, in structure A where the alkyl group is located on the quinoxalic nitrogen, the methylene protons (NCH_2) should show cross peaks with the carbons 8a, 2, and the O-CO carbonyl carbon atom while only two correlations are expected to occur in the case of structure B, the 5' carbon and the O-CO carbonyl carbon atom.

The obtained spectrum (Fig. 3) showed that the two methylene groups located around 5.0 ppm showed three correlations with carbon atoms located at 128.4, 154.6, and 155.0 ppm corresponding respectively with the C8a carbon, the C2 group, and the carbonyl of the CO-O-Et moiety in agreement with the structure A. This univocally demonstrates that the monoalkylation occurred at the quinoxalic nitrogen atom and not on the pyrazolic one.

The results concerning the main long-range correlations observed in the three monoalkylated derivatives are shown in Fig. 4. The observed correlations allowed us to confirm that the monoalkylation occurred at the quinoxalic nitrogen atom yielding compounds **4**, **5**, and **6**.

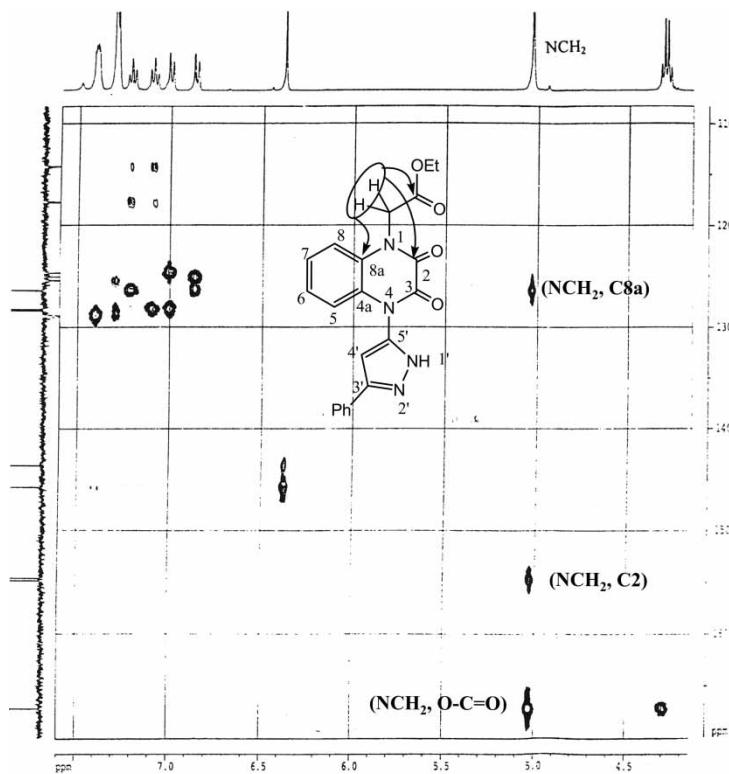
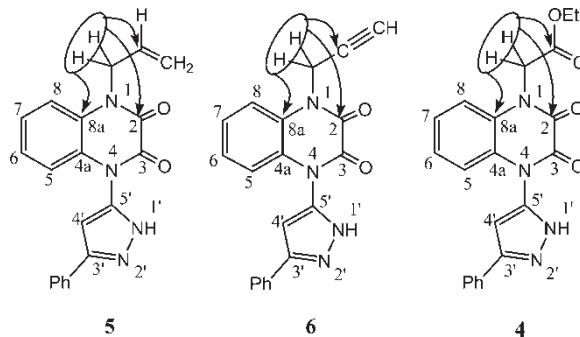



Figure 3. HMBC spectrum of compound 6.

Figure 4. Long-range correlations involving the NCH_2 protons observed in compounds 4–6.

This demonstrated that the monoalkylation occurred at the quinoxaline nitrogen position, which could be considered as more reactive than the pyrazolic one. This led us to conclude that the obtained compounds corresponded thus with structures 4–6 and not to 7–9.

REFERENCES

1. Vierfond, J. M.; Legendre, L.; Martin, C.; Rijnard, P.; Miocque, M. Thiénophosphoryl- and isothiazolo [3,4-b]quinoxalines: synthèse, structure et étude pharmacologique. *Eur. J. Med. Chem.* **1990**, *25*, 251–255.
2. Dalgaard, L.; Hjortkjaer, R.; Regnier, R.; Nordholm, L. Pharmacokinetics of the neuroprotective glutamate antagonist NBQX (6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione) in mice, rats, and dogs. Interactions with probenecid. *Drug Metab. Dispos.* **1994**, *22*, 289–293.
3. De Clerck, E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. *Antiviral Res.* **1998**, *38*, 153–179.
4. Li, H.; Godfrey, D. A.; Rubin, A. M. Quantitative autoradiography of $5-[^3\text{H}]$ 6-cyano-7-nitro-quinoxaline-2,3-dione and $(+)$ -3- $[^3\text{H}]$ dizocilpine maleate binding in rat vestibular nuclear complex after unilateral deafferentation, with comparison to cochlear nucleus. *Neuroscience* **1997**, *77*, 473–484.
5. Ayers, G. H.; Janota, H. F. Spectrophotometric determination of palladium with quinoxaline-2,3-dithiol. *Anal. Chem.* **1959**, *31*, 1985–1987.
6. Kinashi, H.; Otten, S. L.; Duncan, J. S.; Hutchinson, C. R. Frequent loss and restoration of antibiotic production by *Streptomyces lasaliensis*. *J. Antibiot.* **1988**, *41*, 624–637.
7. Sarges, R.; Howard, H. R.; Browne, R. G.; Lebel, L. A.; Seymour, P. A.; Koe, B. K. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. *J. Med. Chem.* **1990**, *33*, 2240–2254.
8. Losher, W.; Lehmann, H.; Behl, B.; Lubish, W.; Hoger, T.; Lemair, H. G.; Gross, G. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate

receptor antagonists: Pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy. *Eur. J. Neurosci.* **1999**, *11*, 250–262.

- 9. Ikeda, Y.; Kuwano, E.; Eto, M. Syntheses and biological activities of some dithiolo-allylidene malonate derivatives and related compounds. *Journal of the Faculty of Agriculture, Akedeniz University*, **1992**, *37*, 81–92.
- 10. Ura, Y.; Sakata, G.; Makino, K.; Ikai, T.; Kawamura, Y. German Offenlegungsschrift DE, 3004770.
- 11. Kasse, K.; Welger, R.; Unterstenhoefer, G.; Grewe, F. 2,3-disubstituierte chinoxaline, eine gruppe neuer pflanzenschutzmittel. *Angew. Chem.* **1960**, *72*, 973.
- 12. Rose, D.; Liesk, E.; Hoeffkes, H.; Hengel, K.-G. A. German Offenlegungsschrift DE **1999**, *3*, 212.
- 13. Lin, S. A facile synthesis of quinoxaline-2,3-diones as NMDA receptor antagonists. *Molecules* **1996**, *1*, 37–40.
- 14. Ahabchane, N. H.; Essassi, E. M.; Bellan, J.; Lopez, L.; Lamande, L. Synthèse de nouveaux macrocycles dérivés de la 1-pyrazolylbenzimidazole-2-thione. *Phosphorus, Sulfur and Silicon* **2001**, *173*, 175–192.